Hallo,
angenommen ich habe zwei normalverteilte Dichtefunktionen, welche sich schneiden. Die Funktion mit dem kleineren Erwartungswert beschreibt die Nullhypothese und die Funktion mit dem größeren Erwartungswert die Alternativhypothese. Der Alpha-Fehler wäre dann das Integral der 1. Funktion ab dem kritischen Wert bis unendlich und der Beta-Fehler das Integral der 2. Funktion von Minus-unendlich bis zum kritischen Wert. Wenn ich nun versuche die Summe des Alpha- und Beta-Fehlers zu minimieren, dann müßte doch der kritische Wert derart verändert werden, dass er sich beim Schnittpunkt der beiden Funktionen befindet, oder?
Wenn die Varianz der beiden Funktionen gleich ist, dann würden doch der Alpha- und Beta-Fehler denselben Wert haben.
Kann dieser Ansatz stimmen, erhalte ich damit wirklich die minimale Summe der beiden Fehlerwahrscheinlichkeiten?