Was heißt "absichern" genau?
Das, was Du gemacht hast. Nochmals nonparamterisch rechnen und schauen, ob ungefähr dasselbe herauskommt.
Meines Wissens sind t-Test und ANOVA doch eigentlich sehr robust gegen evtl. Voraussetzungsverletzungen...
Nicht bei kleinen Stichproben. Die Stichprobengröße ist hier leider nicht genannt. Und auch bei größeren Stichproben nicht gegen alles. Beispielsweise nicht gegen markante Varianzungleichheit bei gleichzeitig deutlich unterschiedlich großen Gruppen.
Ich habe jetzt alle U-Tests gerechnet. Manche tendenziellen Signifikanzen (ANOVAs) sind jetzt nicht mehr signifikant (U-Tests).
Eine tendenzielle Signifikanz ist ein nichtsignifikanter p-Wert, insofern hat sich ja nichts geändert. Wieso ANOVA mit U-Test verglichen wird, ist leider nicht ersichtlich, wat das eine ANOVA mit 2 Gruppen? p-Wert Angaben wären außerdem informativer als Wörter wie "tendziell signifikant" und "nicht mehr signifikant".
Manche signifikanten Ergebnisse (ANOVAs) sind nur noch tendenziell oder gar nicht mehr signifikant (U-Tests). Welche Auswirkungen hat dies auf die Interpretation meiner Ergebnisse (ANOVAs, t-Tests)??? Ich habe Angst, dass diese nun nicht mehr brauchbar sind.
Man kann daraus ableiten, dass Deine "signifikanten" Ergebnisse nicht zuverlässig sind. Was das weiter bedeutet, hängt vom Kontext der Studie ab, theoretischen Annahmen, früheren Befunden, Verwendungszweck der Ergebnisse. Die Welt dürfte dadurch nicht unbedingt gleich unter gehen. Anscheinend wurde auch keine Korrektur wegen multiplen Testens duchgeführt, in dem Fall wären "knapp signifikante" Ergebisse sowieso wackling gewesen.
Gruß
P.