Pfadanalyse mit piecewiseSEM. Komischer data.frame Error

Pfadanalyse mit piecewiseSEM. Komischer data.frame Error

Beitragvon eimichae » Mi 9. Nov 2022, 21:17

Hallo zusammen,
Ich möchte eine Pfadanalyse mit dem R-package piecewiseSEM durchführen.
Ich habe eine vereinfachtes Modell nach einem in der piecewiseSEM Dokumentation sturkturiert.
Leider kriege ich bei der Anwendung des "as.psem" Befehls folgenden Error: "Error in `[.data.frame`(x$data, , vars) :
nicht definierte Spalten gewählt". Dies klingt nach einem einfachbehebaren Fehler. Ich habe allerdings meine Daten mehrfach durckämmt und die Modelle angeschaut. Alles sollte ok sein und ich kann beim besten Willen keinen Fehlerquelle finden. Kann mir da jemand weiterhelfen? Wieso kriege ich den Error:

Untenstehend mein Code und das Datenset:
Vielen, vielen Dank
Michi

# CODE---------------------------------------

Code: Alles auswählen
data2$Tree.ID<-as.factor(data2$Tree.ID)
data2$Year<-as.factor(data2$Year)
data2$Drought<-as.factor(data2$Drought)
data2$Stratum<-as.factor(data2$Stratum)

# 1x:
mod1x<-lmer(N_pc~Stratum:Drought+Year:Drought+(1|Tree.ID),data2)

mod11a<-glmer(cbind(branch_suck_Yes,branch_suck_No)~N_pc+(1|Tree.ID),
              data=data2, family = binomial(link = "logit"))
modlist = list(
  mod1x, mod11a)
model<-as.psem(modlist)#Error: Error in `[.data.frame`(x$data, , vars) : undefined columns selected

model<-psem(modlist, data2)
coefs(modlist, data2, standardize = "none", intercept = FALSE)
model<-psem(mod1x, mod11a)




#DATEN----------------------------------------------------------


Code: Alles auswählen
structure(list(N_pc = c(2.39, 2.81, 2.48, 1.83, 1.91, 1.96, 2.32,
2.54, 2.19, 1.97, 2.29, 1.64, 2.03, 1.68, 2.145, 2.08, 1.99,
1.99, 2.83, 2.83, 2.91, 2.61, 2.73, 2.54, 2.87, 1.91, 2.84, 2.74,
2.87, 2.6, 2.12, 2.64, 2.46, 1.83, 2.06, 2.77, 2.41, 2.74, 2.83,
2.51, 2.79, 2.66, 2.44, 2.26, 2.85, 2.39, 2.52, 2.13, 2.63, 2,
2.43, 2.36, 2.98, 2.28, 2.12, 2.2, 2.54, 1.28, 2.57, 2.17, 2.32,
2.41, 3.11, 2.591, 2.77, 2.53, 2.67, 2.45, 2.5, 2.52, 2.9, 3.03,
2.83, 2.52, 2.57, 2.62, 2.82, 2.62, 2.98, 3.01, 2.33, 2.11, 2.68,
2.74, 2.53, 2.43), Stratum = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L,
1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L,
2L), .Label = c("shade", "sun"), class = "factor"), Drought = structure(c(1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), .Label = c("no", "yes"), class = "factor"),
Year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L), .Label = c("1", "2"), class = "factor"), Tree.ID = structure(c(2L,
15L, 19L, 21L, 22L, 23L, 25L, 28L, 29L, 29L, 30L, 31L, 32L,
33L, 34L, 34L, 35L, 36L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 4L,
5L, 5L, 6L, 6L, 7L, 7L, 8L, 8L, 9L, 10L, 10L, 11L, 11L, 12L,
13L, 13L, 14L, 14L, 15L, 15L, 16L, 16L, 17L, 17L, 18L, 18L,
19L, 19L, 20L, 20L, 21L, 21L, 22L, 22L, 23L, 23L, 24L, 24L,
25L, 25L, 26L, 26L, 27L, 27L, 28L, 28L, 29L, 29L, 32L, 32L,
33L, 33L, 34L, 34L, 35L, 35L, 36L, 36L, 37L, 37L), .Label = c("102_6",
"102_7", "102_8", "113_2", "113_4", "113_5", "114_7", "114_8",
"114_9", "116_6", "116_7", "116_9", "122_3", "122_5", "132_3",
"132_4", "132_5", "242_2", "242_4", "242_5", "243_1", "243_2",
"243_4", "245_1", "245_2", "245_5", "251_10", "251_8", "251_9",
"253_7", "253_8", "254_6", "254_7", "254_8", "267_10", "267_6",
"267_8"), class = "factor"), branch_suck_Yes = c(2L, 3L,
1L, 6L, 6L, 5L, 4L, 8L, 2L, 2L, 2L, 48L, 3L, 22L, 14L, 2L,
1L, 1L, 27L, 25L, 16L, 13L, 31L, 18L, 31L, 2L, 25L, 16L,
36L, 21L, 8L, 23L, 13L, 11L, 7L, 35L, 7L, 17L, 4L, 40L, 48L,
17L, 16L, 10L, 34L, 6L, 46L, 7L, 26L, 12L, 24L, 27L, 31L,
25L, 34L, 21L, 44L, 23L, 40L, 30L, 25L, 18L, 35L, 10L, 6L,
10L, 29L, 5L, 24L, 16L, 19L, 11L, 21L, 10L, 18L, 18L, 42L,
33L, 16L, 31L, 16L, 38L, 37L, 28L, 9L, 35L), branch_suck_No = c(48L,
47L, 49L, 44L, 44L, 45L, 46L, 42L, 48L, 48L, 48L, 2L, 47L,
28L, 36L, 48L, 49L, 49L, 23L, 25L, 34L, 37L, 19L, 32L, 19L,
48L, 25L, 34L, 14L, 29L, 42L, 27L, 37L, 39L, 43L, 15L, 43L,
33L, 46L, 10L, 2L, 33L, 34L, 40L, 16L, 44L, 4L, 43L, 24L,
38L, 26L, 23L, 19L, 25L, 16L, 29L, 6L, 27L, 10L, 20L, 25L,
32L, 15L, 40L, 44L, 40L, 21L, 45L, 26L, 34L, 31L, 39L, 29L,
40L, 32L, 32L, 8L, 17L, 34L, 19L, 34L, 12L, 13L, 22L, 41L,
15L)), row.names = c(3L, 43L, 51L, 55L, 57L, 59L, 63L, 76L,
77L, 78L, 80L, 81L, 86L, 87L, 89L, 90L, 92L, 93L, 97L, 98L, 99L,
100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L,
111L, 112L, 113L, 115L, 116L, 117L, 118L, 119L, 121L, 122L, 123L,
124L, 125L, 126L, 127L, 128L, 129L, 130L, 131L, 132L, 133L, 134L,
135L, 136L, 137L, 138L, 139L, 140L, 141L, 142L, 143L, 144L, 145L,
146L, 147L, 148L, 149L, 150L, 151L, 152L, 153L, 154L, 155L, 156L,
157L, 158L, 159L, 160L, 161L, 162L, 163L, 164L, 165L, 166L), na.action = structure(c(`1` = 1L,
`2` = 2L, `4` = 4L, `5` = 5L, `6` = 6L, `7` = 7L, `8` = 8L, `9` = 9L,
`10` = 10L, `11` = 11L, `12` = 12L, `13` = 13L, `14` = 14L, `15` = 15L,
`16` = 16L, `17` = 17L, `18` = 18L, `19` = 19L, `20` = 20L, `21` = 21L,
`22` = 22L, `23` = 23L, `24` = 24L, `25` = 25L, `26` = 26L, `27` = 27L,
`28` = 28L, `29` = 29L, `30` = 30L, `31` = 31L, `32` = 32L, `33` = 33L,
`34` = 34L, `35` = 35L, `36` = 36L, `37` = 37L, `38` = 38L, `39` = 39L,
`40` = 40L, `41` = 41L, `42` = 42L, `44` = 44L, `45` = 45L, `46` = 46L,
`47` = 47L, `48` = 48L, `49` = 49L, `50` = 50L, `52` = 52L, `53` = 53L,
`54` = 54L, `56` = 56L, `58` = 58L, `60` = 60L, `61` = 61L, `62` = 62L,
`64` = 64L, `65` = 65L, `66` = 66L, `67` = 67L, `68` = 68L, `69` = 69L,
`70` = 70L, `71` = 71L, `72` = 72L, `73` = 73L, `74` = 74L, `75` = 75L,
`79` = 79L, `82` = 82L, `83` = 83L, `84` = 84L, `85` = 85L, `88` = 88L,
`91` = 91L, `94` = 94L, `95` = 95L, `96` = 96L, `114` = 114L,
`120` = 120L), class = "omit"), class = "data.frame")
eimichae
Grünschnabel
Grünschnabel
 
Beiträge: 7
Registriert: Mo 3. Aug 2015, 06:17
Danke gegeben: 0
Danke bekommen: 0 mal in 0 Post

Zurück zu Pfadanalyse, Strukturgleichungsmodelle & CFA

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 9 Gäste

cron