Hi!
Ich glaube, der Versuchsaufbau ist verständlich beschrieben. Du manipulierst die Geschwindigkeit, die Entfernung und das Geräusch ist entweder Elektro- oder Verbrennungsmotor. Daraus ergibt sich eine Zeit, die Du beobachtet hast.
Jetzt stellt sich mir die Frage, wie ich diese Regressionen miteinander in Beziehung setze, um nicht nur die Daten mit den Aussagen der einzelnen Probanden zu haben, sondern über die gesamte Stichprobe bzw. dann später über die Grundgesamtheit eine Aussage zu treffen.
malte* hat geschrieben:Jetzt ginge es mir vor allem darum mit welchem Verfahren ich die Daten aller Probanden zu einer Aussage zusammenfassen könnte.
Das ist mir alles zu schwammig in der Fragestellung. Was ist den jetzt eigentlich die zu beantwortende Frage? Ob die Leute beim Elektromotor länger über die Straße gehen würden als beim Verbrenungsmotor? Oder geht es um ein Vorhersagemodell, das möglichst gut funktioniert?
Anfangen würde ich mit einem Modell der Art
- Code: Alles auswählen
Zeit ~ I(Entfernung/Geschwindigkeit) + Entfernung + Geschwindigkeit + Geräuschart
Entfernung/Geschwindigkeit ist die Zeit, die man objektiv noch hätte, bis das Auto da ist. Wären die Menschen Maschinen, dann wäre Entfernung/Geschwindigkeit die tatsächlich vorhandene Zeit und der Intercept ein Sicherheitspolster. Nun könnte es sein, dass Menschen darüber hinaus je nach Art des Geräuschs, je nach Entfernung und Geschwindigkeit anders reagieren, als eine Maschine das machen würde. Deshalb würde ich in einem ersten Modell jedem davon einen additiven Term gönnen.
Dieses Modell kann man dann ggf. weiter entwickeln. Je nach Anzahl der vorhandenen Prädiktoren könnte man sich Interaktionsterme mit der Geräuschart vorstellen oder, wenn die Verteilung der Residuen nicht gut ist, vielleicht auch quadratische Terme für nicht lineare Einflüsse etc.
HTH,
Bernhard