Interpretation einer multiplen Korrelation + Regression

Alle Verfahren der Regressionanalyse.

Interpretation einer multiplen Korrelation + Regression

Beitragvon BenWish » So 7. Okt 2018, 13:57

Hallo zusammen,

ich habe mal eine Anfängerfrage bezüglich Korrelationen / Regression.
Ich habe hier folgende Spieldaten: Stressor_1, Stressor_2, Stressor_3, Stressor_4, Stresslevel.
Fragestellung wäre jetzt, ob ein Zusammenhang zwischen den Stressoren und dem Stresslevel besteht (z.B. je höher die Ausprägung von Stressor_x, desto höher das Stresslevel).
Wenn ich eine Korrelationsmatrix mit R aufstelle und für die einzelnen Paare die P-Werte rechnen lasse, bekomme ich für alle Stressoren signifikante Ergebnisse (p<.05, einmal nur knapp):

Stresslevel ~ Stressor_1: r = .636, p < .001
Stresslevel ~ Stressor_2: r = .496, p < .001
Stresslevel ~ Stressor_3: r = .610, p < .001
Stresslevel ~ Stressor_4: r = .137, p = .048

Stelle ich in R jetzt aber ein lineares Regressionsmodell auf (Stresslevel ~ Stressor_1 + Stressor_2 + Stressor_3 + Stressor_4), bekomme ich nur für zwei Stressoren eine signifikante Beziehung:

Code: Alles auswählen
Coefficients:
            Estimate Std. Error t value     Pr(>|t|)   
(Intercept) 0.731380   0.182973   3.997 0.0000893993 ***
Stressor_1  0.331858   0.057840   5.737 0.0000000342 ***
Stressor_2  0.030927   0.057191   0.541        0.589   
Stressor_3   0.299109   0.061303   4.879 0.0000021365 ***
Stressor_4   0.007911   0.042931   0.184        0.854   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8748 on 205 degrees of freedom
Multiple R-squared:  0.4809,   Adjusted R-squared:  0.4707
F-statistic: 47.47 on 4 and 205 DF,  p-value: < 2.2e-16


Meine Frage wäre jetzt, wie ich das richtig interpretiere? Betrachte ich jeden Stressor alleine, habe ich 4x Signifikanz. In der multiplen Korrelation aber nur für zwei Stressoren. Haben die beiden anderen Stressoren denn jetzt einen signifikanten Einfluss auf das Stresslevel, oder nicht?

Danke im Voraus für Hilfe :-)

Gruß,
Benjamin
BenWish
Grünschnabel
Grünschnabel
 
Beiträge: 3
Registriert: So 10. Jun 2018, 11:15
Danke gegeben: 2
Danke bekommen: 0 mal in 0 Post

Re: Interpretation einer multiplen Korrelation + Regression

Beitragvon PonderStibbons » So 7. Okt 2018, 18:32

In der mutliplen Regression können 2 und 4 so gut wie keine Varianz mehr aufklären, die nicht bereits von 1 und/oder 3 erklärt wurde. Wie Du das im Einzelnen interpretierst hängt davon ab, aus welchem Grund und zu welchem Zweck Du die multiple Regression durchgeführt hast.

Mit freundlichen Grüßen

PonderStibbons
PonderStibbons
Foren-Unterstützer
Foren-Unterstützer
 
Beiträge: 11362
Registriert: Sa 4. Jun 2011, 15:04
Wohnort: Ruhrgebiet
Danke gegeben: 51
Danke bekommen: 2501 mal in 2485 Posts

folgende User möchten sich bei PonderStibbons bedanken:
BenWish

Re: Interpretation einer multiplen Korrelation + Regression

Beitragvon strukturmarionette » Mo 8. Okt 2018, 09:14

Hi,

- was spielt ihr denn und bei wem wird das wie und womit (UVs und AV) gmessen?

Gruß
S.
strukturmarionette
Schlaflos in Seattle
Schlaflos in Seattle
 
Beiträge: 4352
Registriert: Fr 17. Jun 2011, 22:15
Danke gegeben: 32
Danke bekommen: 586 mal in 583 Posts

Re: Interpretation einer multiplen Korrelation + Regression

Beitragvon bele » Mo 8. Okt 2018, 13:23

Hier ein Beispiel zum Nachvollziehen:

Code: Alles auswählen
x <- rnorm(100)
y <- jitter(x)
z <- y
z[3] <-0


x besteht aus 100 Zufallswerten, y und z sind dasselbe mit einem kleinen Fehler und einem Unterschied im Element Nr. 3, da weist y einen Zufallswert auf und z eine 0. Sowohl y als auch z müssten also hervoragend geeignet sein, um x vorherzusagen.

Was sagt die lineare Regression?
Code: Alles auswählen
Call:
lm(formula = x ~ y + z)

Residuals:
       Min         1Q     Median         3Q        Max
-2.002e-04 -9.340e-05 -3.050e-06  8.936e-05  1.772e-04

Coefficients:
             Estimate Std. Error  t value Pr(>|t|)   
(Intercept) 1.680e-05  1.071e-05    1.569    0.120   
y           9.999e-01  1.171e-04 8539.121   <2e-16 ***
z           1.140e-04  1.176e-04    0.969    0.335   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0001065 on 97 degrees of freedom
Multiple R-squared:      1,   Adjusted R-squared:      1
F-statistic: 4.217e+09 on 2 and 97 DF,  p-value: < 2.2e-16


y eignet sich hervorragend, um x vorherzusagen, darüber hinaus hat z dann keine Information mehr beizusteuern. Trotzdem gilt natürlich weiter:

Code: Alles auswählen
> cor(x,z)
[1] 0.9956675


HTH,
Bernhard
----
`Oh, you can't help that,' said the Cat: `we're all mad here. I'm mad. You're mad.'
`How do you know I'm mad?' said Alice.
`You must be,' said the Cat, `or you wouldn't have come here.'
(Lewis Carol, Alice in Wonderland)
bele
Schlaflos in Seattle
Schlaflos in Seattle
 
Beiträge: 5908
Registriert: Do 2. Jun 2011, 23:16
Danke gegeben: 16
Danke bekommen: 1396 mal in 1382 Posts

folgende User möchten sich bei bele bedanken:
BenWish

Re: Interpretation einer multiplen Korrelation + Regression

Beitragvon BenWish » Mo 8. Okt 2018, 22:56

Super, vielen Dank für die Erklärungen! Das hilft mir weiter :-)
BenWish
Grünschnabel
Grünschnabel
 
Beiträge: 3
Registriert: So 10. Jun 2018, 11:15
Danke gegeben: 2
Danke bekommen: 0 mal in 0 Post

Re: Interpretation einer multiplen Korrelation + Regression

Beitragvon PonderStibbons » Mo 8. Okt 2018, 23:38

Du hattest n=209 Probanden mit vollständigen Datensätzen, die alle die 4 Stressoren erlebten, am Ende wurde dann einmalig Stresslevel erhoben?
PonderStibbons
Foren-Unterstützer
Foren-Unterstützer
 
Beiträge: 11362
Registriert: Sa 4. Jun 2011, 15:04
Wohnort: Ruhrgebiet
Danke gegeben: 51
Danke bekommen: 2501 mal in 2485 Posts


Zurück zu Regressionanalyse

Wer ist online?

Mitglieder in diesem Forum: Bing [Bot] und 9 Gäste